

IRES 2016 Poster Exhibition

10th International Renewable Energy Storage Conference

WASTEWATER TREATMENT PLANTS AS A MUNICIPAL CONTRIBUTION TO PROVIDE SYSTEM SERVICES AND STORAGE CAPACITIES IN THE FUTURE ENERGY MARKET

Background & approach of arrivee

Background

- Integration of renewable energy sources and storage options in the frame of energy system transition.
- Increasing part of renewable energy production (2015: 32,5%) of the German energy mix leads to an increasing need of flexibility to compensate severely fluctuating power generation.

Figure 1: Upgrading of WWTP to Power-to-Gas-to-Power

 Regional water management is able to provide storage capacities and power generation to take part in the German energy transition.

Approach

 Integration of widely available wastewater treatment plants (WWTP) with anaerobic sludge digestion into an optimized control reserve and storage concept to counterbalance those new challenges and take a more active part in energy grids.

Figure 2: Example plant concept on WWTPs, shown: biological methanisation in an external reactor

Concepts for versatile boundary conditions

Purification processes	digestion tank	gas storage	CHP unit	€ 6 H₂ C H₂ C D₂ electrolysis
Load-shedding and switch-on plant aggregates based on the situation of the energy grid	Digestion gas production (~65% CH4, 35% CO2) for flexible energy production	Local intermediate storage for optimised use of the produced gas or long-term storage via natural gas grid	Flexible energy production by using digestion gas/high quality CH4	H ₂ O is separated to O ₂ and H ₂ by using energy surpluses

Stepwise plant concept to increase flexibility Hydrogen stage:

- Usage of H₂ and O₂ from the electrolyser
 - Feed-in of H₂ into the natural gas grid
 - Co-incineration of H₂ in the CHP units (up to 10 vol.% H₂ possible) and conversion to electricity in special H₂-CHP units

Methanisation stage:

 Processing of (high quality) methane by using CO₂ from digester gas and H₂ of electrolysis
 Table 1: Suitable plant concepts for WWTPs to provide system services

	Concept	Electrolysis	Methanisation	Gas quality (%-CH4)	Flexibility potential
١.	Status Quo	no	no	Digester gas (65%)	low
П.	compressed air vs. PSA*	no	no	Digester gas (65%)	low
ш.	H ₂ -usage	yes	no	digester gas (65%) + H ₂	medium
IV.	H ₂ -feed-in	yes	no	Digester gas (65%)	medium
V.	Methanisation - in situ	yes	yes	Methane (70%+)	high
VI.	Methanisation - ext. react.	yes	yes	Methane (95%+)	high
VII.	Methanisation - Sab. react.	yes	yes	Methane (98%+)	high
* pre	essure swing adsorption				

methanisation	battery	O ₂ -enrichment	ozonation	Power-to-Heat
Producing high quality CH ₄ by using digestion gas (CO ₂ -source) and H ₂ (from the electrolyser)	Using battery storage systems to absorb or dispense energy if needed	Using O ₂ in purification processes which is generated on energy surplus to reduce energy consumption on deficits	Using O ₂ from electrolyser to produce O ₃ for ozonation in frame of the 4 th treatment stage	Using energy surplus to convert power to heat for further use

Figure 3: Possible flexibility options on WWTPs with innovative technology

Control concept to provide flexibility

Control concept

VO Sch

- a control concept is generated for load-shedding and switch on on-site energy consumers to provide ancillary services.
- common and new plant components are categorised and analysed by their suitability to offer maximum flexibility for the grid by using a developed algorithm (Figure 4).

- Via in-situ method inside the digestion tanks
- In an external reactor by biological processes

Providing flexibility by:

- optimised CHP usage
- adapted aggregate management
- Compressed air / PSA \rightarrow Ozonation
- electrolyser

 Calculation of the range of flexibility for depending on conditions an WWTP (Figure 5)

- Optimized flexibility potential by use of available resources and infrastructure
- WWTP as flexibility service provider

Classification	Power	Usability	Example
Class α	Class α large at any time		CHP-unit,
		,	elektrolyzer
	medium - large	trouble-free	sludge treatment
			(centrifuge)
Class B	low - medium	limited	blower
Class D	not usable		

Next steps

arrivee for the second second

Abwasserreinigungsanlagen als Regelbaustein in intelligenten Verteilnetzen mit erneuerbarer Energieerzeugung

- Side effects of those external interventions on purification processes and the effects on the local distribution grid are simulated and tested by using a mathematical model of the selected pilot WWTP and the distribution grid.
- The impacts on the transmission grid by participating in a virtual power plant are analysed and tested as well.

Day time

Figure 4: Control concept to provide flexibility on WWTPs by using a developed algorithm and schematic range of flexibility of WWTP

Contact: Dipl.-Ing. Michael Schäfer, email: michael.schaefer@bauing.uni-kl.de, Tel.: +49 631/205-4643 Dipl.-Ing. Oliver Gretzschel, email: oliver.gretzschel@bauing.uni-kl.de, Tel.: +49 631/205-3831 Dr.-Ing. Inka Hobus, email: hob@wupperverband.de, Tel.: +49 202/583-236

erwas-arrivee.de